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Several problems of mathematical physics are reducible to singular integral equations of the 
first kind with Cauchy-type kernels. In this paper an iterative method for the numerical 
solution of this class of equations is proposed. This method can be considered analogous to 
the existing iterative methods for the numerical solution of Fredholm integral equations of the 
second kind and is based on the Gauss- and Lobatto-Chebyshev quadrature rules. The 
method is applied to some plane elasticity crack problems and is seen to give convergent 
results. The application of the proposed method to other singular integral equations appearing 
in physical and engineering problems, either without modifications or after appropriate 
modifications, is trivial. 

1. INTRODUCTION 
Several engineering and physical problems of practical interest are reducible to 

singular integral equations (with Cauchy-type kernels). Moreover, several numerical 
methods for the approximate solution of singular integral equations have appeared 
during the last decade. Some of these methods are reported in the literature of [ 11. 
Yet, none of these methods is iterative, as happens with the successive approx- 
imations method (including the Neumann iterations method) (2,3] and other more 
sophisticated iterative methods described in [ 21. 

In this paper we describe a simple iterative method for the numerical solution of 
singular integral equations. This method is based on the Gauss- and Lobat- 
to-Chebyshev numerical integration rules for regular [4] and Cauchy-type principal 
value integrals [5-71. The solutions are achieved without solving systems of linear 
algebraic equations. 

Our iterative algorithm will be applied to crack problems in plane or antiplane 
elasticity (see, e.g., [5] and the literature mentioned in [ 1, 5, 81). These equations are 
of the first kind and with index K [9] equal to 1 and have the form 

1 “’ - 
J 

w(t) g(c) I_ldt++l’ w(t) W, x) g 0) dt =.0x>, -1 <x < 1, (1.1) 
n -I -1 
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where w(t) is the weight function, 

w(l) = (1 - t2)-V2, (1.2) 

g(t) is the unknown function (proportional to the dislocations density along the crack 
IS]), k(t, x) is a regular kernel and f(x) is a known regular function. Since K = 1, 
(1.1) is supplemented by the condition 

-1 
! w(t) g(t) dt = 0. (1.3) 

-1 

This is the condition of single-valuedness of displacements in crack problems and 
assures the uniqueness of the solution g(t) of (1.1). 

During the last decade more than 100 papers dealing with the numerical solution 
of (1.1) and (1.3), under various geometry and loading conditions, have appeared. 
Collocation and quadrature methods have mainly been used to reduce (1.1) and (1.3) 
to a system of linear algebraic equations. (First proposed by Kalandiya [ 10, 111, they 
were further generalized by Erdogan and Gupta [ 121, and, via a “natural” inter- 
polation formula [2] and the Lobatto-Chebyshev quadrature rule, greatly improved 
by Ioakimidis and co-workers [5, 13, 141.) Some theoretical results justifying the use 
of the above methods were found by Ioakimidis and reported in [ 15-181. 

It is believed that the iterative alorithm for the numerical solution of (1.1) and 
(1.3) will also prove useful in practice for the solution of these equations and the 
determination of stress-intensity factors, proportional to the values g (k 1) at the end- 
points t = f 1 of the integration interval [-1, 11. The main advantage of the proposed 
method is that it has no need of the numerical solution of systems of linear algebraic 
equations and, moreover, it is very simple to program. To date no theoretical proof of 
the convergence of the proposed algorithm is available. Results calculated via this 
algorithm converge in three cases of plane elasticity crack problems. 

The numerical techniques developed in order to obtain numerical solutions to 
Fredholm integral equations of the second kind [2, 31 are basic to the new algorithm 
for singular integral equations. Consider the Fredholm integral equation of the second 
kind [2,3] 

G(x)+ -’ 
J 

do> K(x, v> WY) dy = f’(x), -I<x<l, (1.4) 
-1 

where W(J) is defined by (1.2), K(x, y) and F(x) are known functions and G(x) is the 
unknown function. One simple way for solving this equation numerically is to use an 
iterative scheme (successive approximations or Neumann iterations) [2,3] 

G,+,W=W--j’ NJ’) fW Y) G,b) dh k = 0, 1, 2 ,..., (1.5) --I 
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with 

G,(x) = F(x). (l-6) 

(In these equations Gk(x) denote approximations to the unknown function G(x).) This 
algorithm is convergent under well-known conditions that are generally fulfilled. In 
practice we are seldom able to find a closed-form expression for the integral in (1.5) 
and we have to use a quadrature rule of the form [2,4] 

I i=l 

where yi,, are the nodes and Ai,, the weights. Then (1.5) takes the form (21 

(1.8) 

Although the above algorithm is a satisfactory one, an improvement and 
generalization of it was also suggested. Rewrite (1.4) as 

G(x) + I’ 
-1 

w(j) K(x, y) G(v) dy = F’(x) - j’ wol) W, Y) WY) dy 
-1 

and (1.5) as 

G,c+ Lx> + 1’ 
--I 

w(j) K(x, y) G, + , tj’) & = F(X) - i’ , ‘+‘b’> K(x, y) Gk@) + 

+ .’ J “‘@I K(X, Y) G/h’) dY, (1.10) 
-1 

Next, apply the quadrature rule (1.7) to the evaluation of the first integral of the right 
side of (1.10) and the same rule, but with m nodes (m < n), to the evaluation of the 
remaining two integrals of (1.10). Then we obtain 

G/c+ l(X) + 2 Ai,mK(X, Yi,m> Gk+ I6’i.m) = 6x1 
i=I 

- i Ai,nK(XT Yi,n> Gk6’i.n) + 2 Ai,mK(X,Yi.m) GkOli,m)* (1.11) 
i=l i=l 

By putting x = yi,, in (1.1 l), we obtain a system of m linear algebraic equations for 
the determination of the values of G k+ i(yi,,), the function Gk(x) assumed known. Of 
course, an original assumption for G(x), like (1.6), has to be made. After the deter- 
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mination of Gk+, bi,,J, (1.11) serves as a natural interpolation formula for the 
estimation of G,, , (x) along the whole interval [- 1, 11. 

The above-described algorithm for the numerical solution of Fredholm integral 
equations of the second kind is well known and completely investigated. Atkinson [2] 
refers to it as the first iteration method in the section of iterative variants of the 
Nystrom method. In [2] this algorithm is not only described but also proved 
convergent. Moreover, it is clear that if we select m = 0 in (1.1 l), then this equation 
reduces to (1.8). Hence, the Neumann iterations (1.5) or (1.8), are essentially a 
special case of the aforementioned iterative algorithm of Atkinson. 

It was the purpose of this paper to generalize the Neumann iterations (1.5), or 
(l.S), directly to the case of singular integral equations of the form (1.1) (together 
with the supplementary condition (1.3)). Unfortunately, this was found impossible 
since Eq. (1.1) contains the unknown function g(t) only under the integral sign and, 
therefore, no formula for the estimation of g(f) along the whole interval [-1, 1 ] could 
be found. At this point, we took into account the results of [ 14-181, where it was 
suggested that a natural interpolation formula for singular integral equations can be 
derived from the error term of a quadrature rule for Cauchy-type principal value 
integrals. This was formally justified in [ 181, where it was proved that such a natural 
interpolation formula is equivalent to the classical natural interpolation formula of 
Nystrom for Fredholm integral equations of the second kind [2,3]. 

Under these conditions, we are not able to use (1.11) with m = 0 (that is, the 
Neumann iterations, (1.5) and (1.8)). We need a quadrature rule for the derivation of 
our natural interpolation formula (like (1.11) after the determination of Gk+ i(j~~,,J) 
and for this reason we chose the value m = 1. In this way, the algorithm to be 
described in the next section (as a straightforward generalization of the aforemen- 
tioned results for Fredholm integral equations of the second kind) is sufficiently 
simple, since the selection m = 1 eliminates the task of solving systems of linear 
algebraic equations (as could be necessary in (1.11) for m > 1). It is possible to 
generalize the results of the following section (by selecting m > 1), but then the 
algorithm becomes more complicated. 

We wish to mention again that the algorithm to be suggested in the next section is 
the simplest possible and the most relevant to Neumann iterations, which seem not 
directly applicable to singular integral equations. Moreover, it is a straightforward 
generalization of Atkinson’s method for Fredholm integral equations of the second 
kind to the case of singular integral equations. 

2. THE ITERATIVE ALGORITHM 

By taking into account the developments of the previous section, i.e., the successive 
approximations (Neumann iterations) method and the iterative methods for the 
numerical solution of Fredholm integral equations of the second kind by using 
numerical integration rules [2], as well as the method of estimating the unknown 
function in a singular integral equation from the error term of the numerical 



168 NIKOLAOS I. IOAKIMIDIS 

integration rule used [ 141, we can suggest the following iterative algorithm for the 
numerical solution of the singular integral equation (1.1) accompanied by the 
condition (1.3). 

First, consider the Gauss-Chebyshev and the Lobattc+Chebyshev quadrature rules 
for the numerical evaluation of regular integrals with the weight function w(t), defined 
by Eq. (1.2) [4], 

(2.1) 

respectively, where the primes in the sum of (2.2) mean that the terms corresponding 
to j = 0 and j = m should be halved. The nodes ti and uj are given by 

ti = cos[ (i - 0.5) r/m], i= l(l)m, (2.3) 

uj = cos(inlm), j=O(l)m. (2.4) 

Assume that the number of nodes m is sufftciently large so that the error terms 
neglected are insignificant when the integrals in (1.1) and (1.3) are evaluated 
numerically. 

Moreover, since the first integral in (1.1) is a Cauchy-type principal value integral, 
we take also into account the modified forms of (2.1) and (2.2) for such integrals 
]5,61 

1 1 - 
I w(f)gdfzk g f-$+ ‘~-($)q(x), x+ti,i= l(l)m, (2.5) II -1 I-l I 

1 ’ - 
7l I -1 

WE.=; $;-$+- (,- ‘;;)- ( 
x2 mlX 

) q(x), X # Uj, j = O(l)m, 

(2.6) 

where T,(x) and U,(x) denote the Chebyshev polynomials of the first and the second 
kinds, respectively, and degree m. The first of these quadrature rules is the 
Gauss-Chebyshev rule and the second is the Lobattc+Chebyshev rule for 
Cauchy-type principal value integrals. 

Now we make an initial assumption g,,(t) for the unknown function g(t) in (1.1) 
and (1.3) (for example, by assuming that k(t, x) E 0, whence (1.1) and (1.3) possess a 
closed-form solution [9]) and derive the sequence of approximations gk(t) to g(t) as 
follows: As regards condition (1.3), rewrite it as 

j ’ W(I)~k+dw- j’ w(r)gk(t) dt = -J” w(t)gk(f) dt. 
-1 --I --I 

(2.7) 
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Next, apply (2.1) with m = 1 to the approximation of the first two integrals in this 
equation and with m = n to the approximation of the third integral. Then we obtain 

g/c+ Ito) = gk(O) - $ ,J$ gktti)* P-8) 
1-l 

This is the first equation which will be used in our algorithm. Evidently, if 
gktl(0)-g#-‘O as k-1 co, then 

(2.9) 

and (1.3) will be satisfied if the quadrature rule (2.1) with n nodes is a sufficiently 
accurate rule for the unknown function g(t), as was already assumed. 

Similarly, rewrite (1.1) as 

1 j-’ w(qK(4x) &+*(t,dJ1 - 7c ~0) fW, x> g,ctO dt -I -1 
-f(x) - + j’ w(t) K(h x) gk(f) dt, -1 <x < 1, 

1 
(2.10) 

where 

qt, x) = l/(t - x) + k(t, x). (2.11) 

Apply (2.1) and (2.5) with m = 1 to the approximation of the first two integrals in 
this equation and with m = n to the approximation of the third integral. Then we have 

&+1(x)=g&) + (1 -wwlkk+IP) -&P)l +aw 

- $2 K(ti, x) gk(fi) - un- I(x)gk(xYTn(x)I~ 
i-l 

x#ti,i= l(l)n. (2.12) 

Apply (2.12) at the collocation points uj defined by (2.4), which are the roots of the 
polynomial (1 - x2) U,,_ I(x). We obtain 

gk+l(Uj)=tl -n6j)gk(uj)+ L1 -"jkto~Uj)l[gk+l(0)-gk(o)l 

j = O(l)& (2.13) 

where 

dj=O ifj= l(l)(n- l), Sj = 1 if j = 0 or j = n. (2.14) 
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Unfortunately, (2.8) and (2.13) are not sufficient for the construction of the 
algorithm since both the values of g,Jr+) and g&J are involved in the second of 
them. Hence, we use (2.10) once more but with the Lobatto-Chebyshev quadrature 
rules (2.2) and (2.6) applied to the approximation of the third integral in (2.10). Then 
we obtain 

gk+ ltx> = gktX) + [’ - xk(o, x>1 [gk+ I(‘) - gk(O)l 

x#uj,j=o(l)n. (2.15) 

At the collocation points ti, defined by (2.3) (with m = n), which are the roots of the 
Chebyshev polynomial 7’,(x), (2.15) becomes 

gk+ Itti> = gkcfi) + 1’ - tik(oy ti>l [gk+ I(O) - gk(O)l 

f(ti) -  k if’ K(uj, ti) gk(uj) )  

I  

i = l(l)n. (2.16) 
j=O 

Equations (2.8), (2.13) and (2.16) describe completely the iterative algorithm 
proposed in this section. Provided that the values gk(ti) and gk(Uj) are known (clearly 
the node t = 0 is always included among the nodes ti and u,), then the value g,+,(O) 
is determined from (2.8), the values gk+ l(ti) are determined from (2.16) and the 
values gk+r(Uj) are determined from (2.13). These values can then be used for the 
next iteration. Equation (2.12) or (2.15) can be used for the estimation of gk+ ,(x) 
along the whole interval [-1, I], if required, although this determination is not 
necessary during the iterations procedure. 

If, as k + 00, gk+ r(ti) - gk(fi) + 0 and gk+ ,(Uj) - gk(aj) + 0, then (2.8), (2.13) and 
(2.16) yield (2.9), as well as the following linear algebraic equations: 

+ ,$ K(ti7 uj> go3Cti) = fC”jh j = OC1 1 n7 

-A- it’ K(“j, ti)g,(Uj) =f(ti)5 n 
i= l(l)n. 

j=O 

(2.17) 

(2.18) 

Clearly, Eqs. (2.17) are the linear algebraic equations resulting when the 
Gauss-Chebyshev direct quadrature method [5, 12, 131 is applied to the numerical 
solution of (1.1) and (1.3). Similarly, (2.18) are the corresponding equations when 
the Lobatto-Chebyshev direct quadrature method [5, 131 is used for the numerical 
solution of the same equations. Thus, the values g,(ti) coincide numerically ((2.9) 
taken into account) with the corresponding values resulting from the 
Gauss-Chebyshev method by also using n nodes. But here the number n may be very 
large (since no system of linear algebraic equations has to be solved during the 
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present iterative algorithm) so that the quadrature rules used to derive (2.9), as well 
as (2.17) and (2.18), are nearly exact. On the other hand, always in the case of 
convergence, the values g,(uj) are slightly different from the corresponding numerical 
values derived in the aforementioned Lobatto-Chebyshev direct quadrature method of 
numerical solution of (1.1) and (1.3). This is due to the fact that the 
Gauss-Cheebyshev quadrature rule (2.1) has been used in (2.8) and not the Lobat- 
to-Chebyshev quadrature rule. It is possible to replace (2.8) in the algorithm by the 
equation 

gk+ I(O) = g.k(O) - $ ,t: gkC”j) (2.19) 

by taking into account (2.2). The accuracy of the numerical results obtained will be 
essentially the same as previously since both quadrature rules (2.1) and (2.2) are 
exact for integrands p(t), polynomials of up to (2n - 1) degree. 

After the determination of the values g,(t,) and g,(uj), g,(x) can be determined 
along the whole interval [-1, 1 ] as the Lagrangian interpolation polynomial based 
on these values or by the interpolation methods suggested in [ 141. In the case of 
crack problems the values of the reduced stress-intensity factors k*(rtl) are deter- 
mined by [ 5 ] 

k*(* 1) = l g,(* 1). (2.20) 

These values are directly available, without using interpolation-extrapolation 
techniques since u,, = 1 and U, = -1 as is clear from Eqs. (2.4) (with m = n). 

3. APPLICATIONS TO CRACK PROBLEMS 

In this section we apply the iterative algorithm of the previous section to some 
simple plane isotropic elasticity crack problems. In all these problems the algorithm 
provides convergent results as k -+ 00. 

As a first application consider the problem of a simple straight crack inside a plane 
isotropic elastic medium (see, e.g., [5]). In this case 

k(t, x) G 0, K(t, x) = l/Q -x). (3.1) 

Assume that the loading (pressure) distribution f(x) along both crack edges is given 
by 

f(x) = exp x (3.2) 

and solve (1.1) and (1.3) by the algorithm described above. Make the following initial 
guess for g (t), 
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corresponding to the exact solution of our problem for 

f(x) = 1. (3.4) 

Then from (2.20) we find, because of (3.3), that 

k,*(*l)= 1 (3.5) 

for the initial estimations of the stress-intensity factors at the crack tips. The correct 
values for these factors are [ 141 

k*(l) = 1.8312, k*(- 1) = 0.7009. (3.6) 

As is clear from a comparison of (3.2) and (3.4), as well as (3.5) and (3.6), the initial 
assumption for g(t) was far from good. Yet, the numerical results obtained by 
applying the algorithm of the previous section converged. 

Table I (second and third columns) shows the values of k:(kl) determined by 

kk*(*l)= *g,(+l) (3.7) 

after the application of the present algorithm to (1.1) and (1.3) under the present 
conditions with n = 4 and k = 0(1)6, as well as k + 00 (obtained in practice for 
k = 10). From these results we observe the rapid convergence of the numerical 
results. Next, Table II (second and third columns) shows the values of kf$(& 1) (deter- 
mined also with k = 10) for n = 2(1)5. From these results it is clear that in the 
present application n need not be large to obtain accurate results for k*(fl) (3.6). 

TABLE I 

Convergence of the Numerical Results for the Stress-Intensity Factors k*(+l) at the Tips of a Simple 
Straight Crack or a Periodic Array of Collinear or Parallel Cracks (with a/b = 0.25) for Two Loading 

Distributions@) for Increasing Values of k and n = 4 

Parallel 
One crack Collinear cracks cracks 

exp x exp x x214 1 exp x exp x x21x1 1 
0 0 0 0.25 0.25 0.25 0.25 0.25 

k k,*(l) k:(-1) k:(+ 1) k:(+ 1) k:(l) k:(-1) k:(fl) Wfl) 

1.0000 1.0000 1.0000 
2.7183 0.3679 1.0000 
1.7741 0.7358 0.3029 
1.8325 0.6999 0.4042 
1.8312 0.7010 0.4223 
1.8312 0.7009 0.4223 
1.8312 0.7009 0.4223 

1.8312 0.7009 0.4223 

1 .ooOO 
1.1228 
1.1283 
1.1283 
1.1284 
1.1284 
1.1284 

1.1284 

1 .oOOo 1.0000 1 .oooo 1.0000 
2.8411 0.4907 1.1228 0.7531 
1.9372 0.9286 0.3926 0.7953 
1.9829 0.8406 0.4119 0.7887 
1.9729 0.8497 0.4426 0.7898 
1.9745 0.8483 0.4436 0.7896 
1.9743 0.8486 0.4438 0.7896 

1.9743 0.8485 0.4437 0.7896 
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TABLE II 

Results as in Table I but for Increasing Values of n 

One crack Collinear cracks 

f (xl: exp x exp x 
a/b: 0 0 

n k%(l) kZ,-l) 

exp x exp x 
0.25 0.25 

k%l) kZ--1) 

-__ 
X*/XI 1 

0 0.25 

k,Zo(f 1) kS*l) 

0.3536 1.1307 
0.4167 1.1283 
0.4223 1.1284 
0.4236 1.1284 

2 1.8482 0.6730 
3 1.83 15 0.7007 
4 1.8312 0.7009 
5 1.8312 0.7009 

Parallel 
cracks 

x214 1 
0.25 0.25 

42~1) kZ,C* 1) 

2.0129 0.8377 0.3998 0.7900 
1.9741 0.8475 0.4327 0.7896 
I.9743 0.8485 0.4437 0.7896 
1.9743 0.8485 0.4455 0.7896 

Even if this were the case, the direct application of our algorithm would still be 
possible. In practice, it is convenient to use a sufficiently large value for n (estimated 
from the smoothness of the known functions k(t, x) and f(x) in (1.1)) in the 
algorithm so that no repetition of it with higher values of n is necessary or just one 
repetition with n replaced, for example, by 2n to confirm the original numerical 
results. 

We have also considered the problem of a periodic array of cracks of length 2a 
along a straight line with a period equal to b also inside a plane isotropic elastic 
medium. In this application the kernels k(t, x) and K(t, x), related by (2,l l), are given 
by [5, 191 

IQ, x) = T cot 
m(t - x) 

b ’ 
k(t, x) = K(C, x) - & * 

Numerical results, similar to those described previously in the case of a simple 
straight crack (with b = co, that is a/b = 0), are also presented in Tables I and II for 
a/b = 0.25 and a loading distribution f(x) along the crack edges either constant 
((3.4); fifth columns), or exponential ((3.2); sixth and seventh columns). The 
numerical results were also seen to converge rapidly in spite of the fact that (3.3) was 
assumed again as an initial approximation to g (t). For f(x) = 1, the theoretical value 
for the stress-intensity factor k*(& 1) at the crack tips is determined by (see, e.g., [5]) 

k*(fl)= (+ot+)-“2 . 
(3.9) 

From this formula we obtain the value k*(* 1) = 1.1284 for a/b = 0.25, which is in 
complete agreement with the numerical results of Tables I and II for this case. The 
results of Table I show the rapid convergence of the numerical results obtained by the 
algorithm, even for very bad original assumptions for .go(th 

Next, the algorithm with the same initial guess ‘for go(t) was applied to the case 
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when a/b= 0.4. In this case, each crack is four times longer than the distance 
between two successive crack tips of two successive cracks. In spite of this incon- 
venient geometry condition, the algorithm produced convergent results for both 
selections (3.4) and (3.2) for the loading distribution f(x). The convergence, while 
not as rapid as in the numerical results of Tables I and II, was acceptable. 

To further test the algorithm, consider the case of a periodic array of parallel 
cracks, the length of the cracks denoted again by 2a and the period of the array by b. 
In this case, (3.8) take the forms [5, 191 

K(t, x) = T 2 coth 
?ra(t -x) 

b 
Mt - xl cosech* 7w -x> 

- b I b ’ 

k(t, x) = K(t, x) - ;I;. 

Numerical results for this problem, with a/b = 0.25 and f(x) = 1, are presented in 
Tables I and II (ninth columns) and the convergence of the algorithm is seen from 
Table I (for increasing values of k). The convergence of the corresponding results of 
Table II denotes essentially the convergence of the Gauss- and LobattcXhebyshev 
methods for singular integral equations and not of the present algorithm. 
Furthermore, the value k* = 0.7896 in the present application (clear from the results 
of Tables I and II) is in complete agreement with the corresponding value reported in 
[5, 191. 

The kernels K(t, x) used in the previous applications were sufficiently complicated 
to illustrate the power of the proposed algorithm. The right-hand side functionsf(x) 
in the examples above are well-behaved. Now consider the case where 

f(x)=x21xl (3.11) 

with only two continuous derivatives. The results of [ 171 demonstrate that continuity 
of only the first derivative off(x) is not sufficient to guarantee the convergence of the 
Gauss- and Lobatto-Chebyshev methods. The continuity of the second derivative of 
this function seems required. Hence, f(x), as defined by (3.1 l), having just the 
minimum properties for the convergence of these methods, was selected as a test 
function in [ 171. 

The new algorithm, operating on the loading distribution (3.11) with either a single 
straight crack or a periodic array of collinear cracks (with a/b = 0.25), produced the 
numerical results for the stress-intensity factors displayed in Tables I and II (fourth 
and eighth columns). Comparison with the corresponding numerical results reported 
in [ 171 is excellent. The bad behavior off(x) in the present application had negligible 
influence on the speed of convergence (Table I, increasing values of k). From the 
results of Table II it is clear that larger values of n (compared with those used in the 
previous applications) must be used to obtain the same accuracy in the final 
numerical results. 
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4. GENERALIZATIONS 

The algorithm proposed in Section 2 can be appropriately modified in order to 
solve related physical problems, for example, fluid mechanics problems, contact 
problems, dislocation problems, and waveguide problems. 

Replacing the Gauss- and Lobatto-Chebyshev quadrature rules by the Gauss- and 
Lobatto-Jacobi quadrature rules creates a new algorithm, applicable to singular 
integral equations of the second kind (with index also equal to 1). Examples 
considered by the direct quadrature method in [20] for the case of real singularities a 
and j3 in the weight function w*(t) associated with the Jacobi polynomials 

w*(t) = (1 - t)“(l + t)” (4.1) 

or in [2 I] for the case of complex singularities a and j3 are readily solved. 
Another possibility substitutes two semi-closed Radau-type quadrature rules (one 

with a node coinciding with the end-point t = 1 of the integration interval I-1, 1 ] and 
the other with a node coinciding with the other end-point c = -1 of the same interval) 
[20] instead of the corresponding Gauss-type and Lobatto-type rules in both cases of 
singular integral equations of the first or the second kind (associated with the 
Chebyshev or the Jacobi polynomials, respectively). 

Moreover, the new iterative algorithm can solve systems of uncoupled singular 
integral equations of the form (1.1) (or systems of singular integral equations of the 
second kind). 

In fluid mechanics problems or contact problems in plane elasticity one of the 
restrictions 

g(l)=0 or g(-1) =o (4.2) 

for the unknown function g(t) in (1.1) often applies. In this case the index K of (1.1) 
is equal to 0 and condition (1.3) is no longer necessary and valid. Then (2.7), (2.8) 
and (2.9) are not applicable. In order to use the algorithm of Section 2 in this case, 
construct a condition similar to Eq. (1.3) by applying Eq. (1.1) at the end-point t = 1 
or t = -1 of the interval [-I, I] where g(t) vanishes. Clearly, Eq. (1.1) is valid for 
this end-point of the interval [-1, 11, but, obviously, it is not valid for the other end- 
point of the same interval (since the principal value Cauchy-type integral of Eq. (1.1) 
is not defined for the latter end-point). If, for example, g (1) = OY we obtain, from Eq. 
(1.1) for x= 1, 

1 ’ - 
71 I W KG, 1) g(r) d( =f( 1 h (4.3) 

-1 

where K(t, x) is defined again by (2.11). This equation can be used exactly as (1.3) 
for the derivation of equations similar to (2.7) to (2.9). 
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